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The Boundary Value Problem in Fermion Systems 
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The half-space boundary value problem for fermions near zero temperature in 
plane geometry is solved for diffuse boundary scattering by numerically con- 
structing the spatial propagator in terms of the eigenfunctions of a generalized 
eigenvalue problem for the linearized Uehting-Uhlenbeck collision integral. The 
slip length is calculated for several interparticle scattering laws and compared 
with a relaxation time ansatz result and the experimental values for normal fluid 
3He. It is shown that the nonsingular part of the collision operator is relatively 
compact to the singular part. 

KEY W O R D S :  Boundary value problems; normal phase Fermi fluids; liquid 
helium-3; Fermion systems; slip flows; Uehling-Uhlenbeck equation. 

1. I N T R O D U C T I O N  

The linearized Uehling-Uhlenbeck (UU) collision integral s which applies 
to normal Fermi liquids, has the remarkable property that its spectral 
decomposition in the nearly degenerate regime can be constructed in an 
exact, closed form, ~ which allows the solution of the corresponding initial 
value problem, i.e., the relaxation of a given space-homogeneous perturba- 
tion. It seems reasonable to attempt a similar approach for the simplest 
boundary value problem, i.e., the calculation of the stationary velocity of 
flow near a boundary surface in planar geometry, which involves construct- 
ing the spectral decomposition of vfls (v: denoting the quasiparticle 
velocity perpendicular to the wall). 

Experiments on normal liquid 3He (relaxation of Poiseuille flow 
through capillaries, C2) damping of torsional oscillators 13"4~ and of vibrating 
wires ~5) as well as attenuation of first sound t6~ have shown that a thermo- 
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hydrodynamic description is not sufficient. In order to study deviations 
thereof, we solve the linearized UU equation ~1'7~ for some scattering laws 
assuming purely diffuse reflection at the wall. We explicitly calculate the 
so-called slip length, i.e., the distance from the wall where the fluid velocity 
extrapolates to zero. The results are compared with a simpler previous 
model calculation ~8) and the experimental data. (~'4~ 

In Section 2 we start with linearizing the quasiparticle distribution 
about a local equilibrium flin with a velocity proportional to the distance 
z from the wall. This results in a linearized collision equation with an 
inhomogeneity. The solution at z = 0 is expanded in terms of eigenfunctions 
of v z 1 s  and three additional functions, according to a method developed 
by Case ~9) and CercignaniJ ~~ The slip length is expressed in terms of one 
of the expansion coefficients. The boundary conditions at the wall and far 
away are formulated in Section 3. In Section 4 we take a closer look at the 
linearized UU collision operator, which leads us to a Fourier transform 
with respect to the reduced quasiparticle energy; just as in the works of 
Sykes and Brooker (12) and Vogel eta l .  ~1) Furthermore, we make a first 
comparison with the relaxation time ansatz of Einzel et al. (s) In Section 5 
we calculate the transformed eigenfunctions numerically, which we use to 
evaluate the slip length in Section 6. For that purpose we discretize and cut 
off the transform of the expansion mentioned above in a suitable manner 
and project it in the half-space vz > 0 (because of the boundary condition 
at the wall) on the remaining basis functions, which are the restrictions to 
the same half-space of the eigenfunctions of - v j ~ s  belonging to non- 
negative eigenvalues. The resulting system of linear equations for the 
expansion coefficients is solved numerically to yield the slip length. 

Some calculations concerning the angular part of the collision integral 
s follow in Appendix A, as well as a proof for the relative compactness of 
the regular part of s with respect to the singular part in Appendix B. 

2. T H E  SLIP L E N G T H  IN T E R M S  OF A 
S P E C T R A L  D E C O M P O S I T I O N  

We consider a stationary, planar shear flow of a degenerate normal 
Fermi liquid along a planar, solid, diffusely reflecting wall. This situation 
corresponds to the Kramers problem in classical transport theory, (11) i.e., 
a limiting case of plane Couette flow with one of the two plates being 
removed to infinity. The surface normal defines the z direction, the wall 
being at z = 0, and the flow shall be directed along the x axis. 

Under these circumstances, the fluid velocity increases asymptotically 
linearly with an--as  we shall s e e ~ x p o n e n t i a l  deviation near the wall. The 
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so-called slip length ~ is then defined as the distance behind the wall where 
the bulk velocity extrapolates to zero (Fig. 1) 

6~(z )  = a(z + r l l )  

with a = const. In order to calculate ~_(z) and (, respectively, we expand 
the distribution function f ( z , p )  for the quasiparticles about a local 
equilibrium flin(z, p) with velocity ~5~in = az: 

f ( z ,  p)=-flin(2, p ) +  h(7~, p)flirt(z, p)(1 - f l i n ( z ,  p)) (2) 

with 
f , in(z  ' p) = fO(E - ~'~"p) = f ~  - azpx)  (3) 

f o  is the Fermi distribution 

f ~  [1 + e x p  E - #  

and u = (E  - # ) / ( k  B T). 
The equation to be fulfilled by f is the linearized Uehling-Uhlenbeck 

equation 

~f ~,_-=lf (5) Oz 
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Fig. I. Schematic profile of the mean velocity g. 
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where the linearized collision operator s is given by 11'7) 

s  ~ f l i n ( l  __ flit,  ) s  

2g f 9 - m,2(2gh) 3 d P2,3.4 6(p + P2 - P3 - P4) 6(E + E 2 - E 3 - -  E 4 )  

dry •  (p ,  p,,) lin hn lin 
f ~f2 (1 - (6) - f 3  )(1-f]n)(h3+h4 - h  h2) 

dr2 

Here g is the spin multiplicity, m* is the effective mass in the presence of 
Fermi liquid interactions, E--p2/2m* is the energy of the quasiparticles, 
and d~/d~ is the spin-averaged effective differential cross section for the 
quasiparticles depending on the relative momenta P' = g(P21 _ p) and p " =  
�89 before and after the collision, respectively. (Actually, dff/df2 
depends only on the angle between p' and p" and on IP'[ = [P"I.) flin stands J i  
for flirt(z, pi), and similarly for hi. 

Expressing the lhs of Eq. (5) in terms of Eqs. (2)-(4) and keeping only 
terms linear in h, we get a linear inhomogeneous equation for h, 

0h 1 a 
- - - - -  s  - f~px = - B p x  (7) 
c~z vz kB 

with B : a/kB T. The particular solution vanishing at z = 0 is given by 

: f~ dz' O(z -z')(-Bpx) = -Bzp~ hpart(Z, P) 

with the propagator 

(8) 

(9) 

Equation (8) results from the fact that p.~ is one of the collision invariants 
of s i.e., s = 0. The formal solution of the corresponding homogeneous 
equation 

Oh v ~ = L h  (10) 
is given by 

hhom(Z, p)= 0(z) h(0, p) (11) 

As the collision operator s is symmetric with respect to the scalar product 

( a l b )  = f d3p f~ _ f o )  a(p) b(p) (12) 
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it is convenient to expand h(0, p ) in to  eigenfunctions of G-ts 

s -Kv:@~ ( - ~  < K <  +oo) (13) 

However, as shown by Cercignani, ~11~ these eigenfunctions do not form a 
complete system in the corresponding Hilbert space. There are additional 
solutions of Eq. (10) linear in z, which cannot be written as a superposition 
of the exponentials e x p ( - ~ c z ) ~  and the collision invariants @o = 1, 
~x.2.3=p.~.y.~, and @ 4 = / , /  [cf. Eq.(4)] .  These are most conveniently 
obtained by putting h=flz+ 7 in Eq. (10), with f l#0 .  Comparing coef- 
ficients gives s = 0, i.e., fl must be one of the collision invariants 0, 
( i = 0  ..... 4), and [~?=flvz. This inhomogeneous equation for ~ is only 
solvable if the inhomogeneity fig is orthogonal to the collision invariants, 
which restricts fl further to the possibilities fl = @~ with e = 1, 2, or 4. 

These additional solutions of Eq. (10) can be written as 0/2 ~(vz@~) 
(cr 1, 2, 4). Cercignani (H) showed that the three functions s ~(v.@~) 
(cr = 1, 2, 4) together with the eigenfunctions of Eq. (13) (including those 
with x = 0 ,  i.e., the collision invariants) form a complete system in our 
Hilbert space. 

Now we can write down the general solution of the inhomogeneous 
equation (9) as 

h(z, u ) =  hpart(Z , U)+ hhorn(Z , B) 

~ =  1,2,4 

+ ~  drc e '~ ~ b~,@,:,(u) (14) 
n 

where Z ,  is due to the anticipated partial degeneracy of the eigenvalues K, 
and b~ and b~, are constant coefficients to be determined from the 
boundary conditions (see next section). The first two terms of the rhs 
together with the (~ = 0) parts of the third one form the asymptotic (i.e., 
nonrelaxing) part h~ of h. Here we have used the symbolic notation u as 
an abbreviation for the variables u, 0. It should be remarked that the 
integral j" d3p in Eq. (12) is written in spherical coordinates and is replaced 
here and in the following by 

f@ f f do 

where the momentum-energy relation has been linearized about  the Fermi 
level and the lower limit of the u integration has been shifted from 
-t~/kBT~ - 1  to - 0 %  which is allowed because of the weight function 

fo(1 _ f o ) =  �88 sechR(u/2) in Eq. (12); PF is the Fermi momentum and v.~, vy, 

822/55/5-6-18 
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and v_ will be replaced by vvsinOcos~o, v vsinOsin~p, and vvcosO, 
respectively (Vv = Prim* is the Fermi velocity). 

Let c o be the sum of the coefficients ofp~ = ~1 (we shall see in the next 
section that Co is actually a constant). Then the slip length ~ is obtained by 
[cf. ref. 13 and Eqs. (1) and (2)] 

g 
a(z + ~)= (2~h)3 n f d3p vxf~(z,  p) 

3c0 
= az + 4np----~v f d3p v~pxf~ _ f o )  (15) 

where n is the particle density, which has been taken in the low-temperature 
limit (n=gk~/6z~2), and it has been used that ~d3pho~fli"(1-flin) is 
equal to ~ d 3 p h o ~ f ~  ~ to first order in ho~; the integrals over all 
components of h~ other than Px give zero because of symmetry reasons. 
The remaining integral on the rhs of Eq. (15) can be easily evaluated to 

4 3 give XgpFkB T, so that the slip length ( is obtained as 

3. THE B O U N D A R Y  C O N D I T I O N S  

The boundary conditions that we will use to determine the interesting 
coefficients in Eq. (14) are: (i) h(z, u) must be finite for z --+ ~ and (ii) the 
fermions (quasiparticles) scattered by the wall must be in thermal equi- 
librium with the wall, which implies h (z=0 ,  u ) = 0  for vz>0, i.e., for 
0<n/2 .  The first condition demands that h(z, u) must not contain any 
exponentially or linearly increasing parts, so ben=0 for all ~ < 0  and 
b2 = b4 = O, bl = B = a/kB T. 

We can get rid of still other parts of h in Eq. (14): First we split up 
the eigenfunctions of Eq. (13) into symmetric (~+n) and antisymmetric ones 
( ~ )  with respect to reflection at the Fermi surface ( u ~ - u ) .  This is 
allowed because the linearized collision operator s is invariant under this 
reflection (see, e.g., Sykes and Brooker~12)). Second, as a consequence of the 
rotational invariance of s it does not mix different multipoles. ~12) The 
factor v ~ t =  (W cos 0) -1 still leaves the azimuthal part of the multipole 
expansion invariant. Therefore, we can split up the eigenfunctions 

+ ~,L(u, 0, ~p) of Eq. (13) into new ones, 

+ c  + c  ~t~-nm(U , O, (49) = ~2,m(U, O) COS mq~ (m~>0) 
(17) 

O +s tu o, ~o) +s . . . . .  = ~;~m(U, O) sin m~p (m > 0) 
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respectively. Now a glance at Eq. (15) [cf. the remarks after Eq. (13)] 
shows that only eigenfunctions with positive parity ( + )  and (cos q)) 
dependence [m=  1, (el)= c] contribute to the mean velocity. In a certain 
analogy to Cercignani, (14) we therefore apply the projection operators 
P;,=l=n-tcosqo'~dq~cos(p and P+~ =[l+P(u--*-u)] to Eq.(14), 
which are fortunately compatible with the boundary conditions, and get 
from the condition (ii) above the relation 

0-- L-t(v~px)+cop.~+ dtc~b~nO~n(u,O)cos( p O(vz) (18) 
K > 0  n 

where the indices m =  1, (-t-)= +, and (~)=c have been suppressed, the 
summation over n contains here only the remaining partial degeneracy for 
this special case, and O stands for the Heaviside step function. 

The Co obtained from Eq. (18) yields the same slip length ~ as would 
be obtained by linearizing about a local equilibrium flin' with velocity 
g~(z)=a(z+~), and approximating the difference f~ in the 
boundary condition at z -- 0 by the first order part of the Taylor expansion 
in terms of g~o(0)Px. 

In order to determine the coefficients in Eq. (18), we make an assump- 
tion, the validity of which has been proved by Cercignani ~~ in the classical 
case for an analytically solvable model collision operator (relaxation time 
ansatz with momentum conservation): We take the eigenfunctions [Px and 
~ ( u )  belonging to eigenvalues ~ > 0 ]  to be a linearly independent 
complete system in the half-space v: > 0, projected on the relevant part by 

~ c  means of Pm= 1 and/~,+. 
With this assumption, Eq. (18) represents an expansion of s 

in terms of eigenfunctions of v2-~s in the half-space v~>0. Whereas 
Cercignani, (~~ however, could give a new scalar product, with respect 
to which these eigenfunctions become orthogonal in the half-space v~ > 0 
(because of the special structure of his model operator), we have no hope 
to find such a product for our problem, as in general it is also impossible 
to orthogonalize a given basis of a finite-dimensional space just by intro- 
ducing a diagonal matrix into the scalar product. We must therefore take 
a different approach to calculate the coefficients: We project Eq. (18) on a 
suitably chosen finite, discrete subset of eigenfunctions; then we only have 
to solve a system of linear equations to get the coefficients and thereby the 
slip length ~. Before doing this, we will first take a closer look at the colli- 
sion operator and calculate the eigenfunctions numerically, or, to be exact, 
their Fourier transforms with respect to u. 
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4. INVESTIGATION OF THE COLLISION OPERATOR 

Taking out the ( - h )  term on the rhs of Eq. (6), we can split up the 
collision integral operator into a multiplicative, i.e., singular, part -v(u)  
(the negative of the so-called collision frequency) and a regular rest K, so 
we have, according to Vogel et aL ~1) (cf. Sykes and Brooker ~12)) 

12 = -v (u )  + k =  -coB(1 + u2/~ 2) + I~ (19) 

where co B is a fundamental frequency 

gm*(kB T) 2 e 1 d# 
:21 dD - -  (20) coB 4h 3 cos(0/2) dr2 

[here ~ is the angle between p and P2 (which in the degenerate regime is 
approximately equal to the angle between P3 and P4) and ~5 is the angle 
between the planes of p, P2 and P3, P4] and the action of k depends on the 
u parity and multipolarity of the operand: 

coB U 
k(O+(u) Ylm(O)) = 2~ Y~m(f2) ~5- 2 cosh 

fx, U--V 1 I) 
x -o~ d V s i n h ~ _ v ) / 2 ]  0 ~ ( v ) ~ s e c h ~  (21) 

with the parameters )~[ given by 

= (  4zE ~,12{f 1 
,V \ 2-7Z7 ) ab - -  cos(7~/2) 

+ Y,o(co  7_. s m  

x ( f d ~ ' ~ ~ ~  -1 (22) 
cos(~/2) dDJ 

For a constant (or averaged) differential cross section, Eq. (22) simplifies 
to (~) 

1 
2? = 2/+---~ [2 + ( - )'+ 13 (23) 

We now restrict ourselves to the relevant case of (cos ~o) dependence 
[m = 1, (s ~) = el, positive parity [( ___ ) = + ] ,  and nonnegative eigenvalues 
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~c. We expand a given eigenfunction ~ ( u ,  0, q) = ~O~(u, 0) cos q) in terms of 
the normalized real parts of the Yn(s 

Y~1([2) = 2 I/2 Re Yn(/2)= 2UzYtl(O, 0} COS q) (I>~ 1) (24) 

viz. 

~,~(u) = ~ ~b~,(u) Y~1(s (25) 
l = l  

Here the Y~I form a complete orthonormal system in the subspace with 
m = 1 under consideration. So we have 

1 

t/.t~:l(U)=21/27C f d(cosO')lp,~.(u, 0') Yll(O',O) 
- -1  

(26) 

and the eigenvalue equation, Eq. (13), gets transformed after interchange of 
sum and integrals, dividing by 209B cosh(u/2) cos ~0, substituting 

1 /d 
q,~(u, 0 ) = ~  sech ~ ~,K(u, 0) 

and introducing dimensionless eigenvalues 

into 

(27) 

~. = K/(  cOB/Vv ) (28) 

( u2) t ~ c o s O q K ( u , O ) = -  1+--~ qK(u,O) 

1 f ~  H--U + ~ -~ dv s i n h [ ( u -  v)/2] 

with the abbreviation 

x J-1 d(cos 0') w(0, 0') q~.(v, 0') (29) 

w(O, 0') = 4re ~ 2[- Yn(O, O) Y,~(O', O) 
l = l  

Finally, (inverse) Fourier transformation with respect to u, 

f 
ZC 

(p~(t, O) = (2rt) 1/2 du e'"tq,~(u, O) 
- -  o o  

(30) 

(31) 
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and substitution ~ t = ~  leads us to the integrodifferential eigenvalue 
equation 

- ~  cos 0 ~0~(~, 0) = - 1 + ~oK(~, 0) 

+ sech 2 ~ d(cos 0') w(O, 0') ~o~(~, 0') (32) 
--1 

For a constant differential cross section [cf. Eq. (22)1, the kernel w(O, 0') 
can be expressed as follows (see Appendix A): 

with 

where 

w(O, O')=2f(O, O')+ fOz-O, 0') 

f(O,O')= (sin 0 sin 0') 1/2(__/) 3/22F 1 , ~ ; 3 ; t  (33) 

2 sin 0 sin 0' 
t =  1 _ cos(0_ 0,)~ ] -  ~ ,  0] 

This kernel w(O, 0') has a logarithmic singularity for 0 =  0' and 0 = r e - 0 '  
because of 

f(O,O')~(rcsinO) l ( - l n l 0 - 0 ' l + l n s i n 0 + c o n s t )  for 0-~0 '  (34) 

(see Appendix A), which is clearly integrable, however. The factor (sin 0)-1 
does not give trouble because the element of integration is d(cos 0 )=  
- s in  0 dO. 

Let us now rewrite Eq. (29) in the form 

- ~(cos 0) q~= [-- v'(u) + /~ ' ]  qK (35) 

with v'(u)= v(u)/~% and K' denoting the double integral operator on the 
rhs of Eq. (29). As shown in Appendix B, /~' is relatively compact with 
respect to - v ' .  This implies that also the operator K'(cos 0)-1 is relatively 
compact with respect to -v ' / cos  0, because /~'(cos 0) -1 ( -v /cos  0 ) - 1 =  
- K ' v '  1 and the latter operator is compact (see above and Reed and 
Simon~15~). According to an extension of Weyl's theorem, ~15J the con- 
tinuous spectrum (more precisely, the set of limit points of the spectrum) 
of Eq. (35) is the same as that of the equation -~(cos  0) q~ = -v'(u) q,~, 
viz. ] - ~ , -  1 ] u [1, ~ E. This is particularly useful here, as we had to 
treat the continuum by discretization. 
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We can now make a first comparison with the improved relaxation 
time ansatz of Einzel etal. 18~ We obtain their collision operator from 
Eq. (29) by making the following simplifications: ( i )The v integration 

dv (u-v) /s inh[(u-v) /2]  is replaced by a multiplicative constant chosen 
to guarantee momentum conservation, (ii) the l summation in w(0, 0') [see 
Eq. (30)] is cut off after l =  2 (note:).~ = 1 for an arbitrary interaction~121), 
(iii) the collision frequency v(u)= e)s(1 + u2/rc 2) is replaced by the inverse 
of an averaged relaxation time ~ = (1 - 2 [ ) % ,  r ,  being the viscous relaxa- 
tion time (see, e.g., ref. 12), and (iv) the u dependence of the distribution 
function and of the eigenfunctions is dropped. 

5. T H E  T R A N S F O R M E D  E I G E N S O L U T I O N S  

5.1. 'The Discrete  S p e c t r u m  

For simplicity we consider first the discrete part of the spectrum, i.e., 
those eigenvalues ~? with 0 ~< g < 1 (negative eigenvalues have been disposed 
of above). Any physically reasonable solution of Eq. (32) will be finite for 

~ oo (in order to guarantee Fourier transformability), so the second term 
on the rhs of Eq. (32) will vanish in that limit and a solution of the 
equation for 0 < g < 1 will be asymptotically given by 

q)~.(~, O)~c~(O)exp[s (36) 

with 

~r2~c(O ) = (1  - -  /'~ COS 0 )  1/2 

[We regard eigenfunctions of Eq. (13) with positive u parity only, which 
leads to transformed eigenfunctions symmetric in ~.] Again we must 
require Fourier transformability; so the preexponential factor c~.(O) must 
vanish identically. This gives the criterion for the allowed initial conditions 
at ~--0, which can only be fulfilled for certain discrete eigenvalues (see 
below). 

For the purpose of a numerical calculation we proceed as follows. We 
discretize the integral in Eq. (32) by dividing the interval [0, ~] into No 
intervals Ij of the same size rc/N o centered at Oj=(j-1/2)rc/N o 
( j =  1 ..... No) and assuming that q~(~, 0) is approximately constant on each 
interval Ij for any ~ with modulus smaller than a cutoff value ~co; for 
Ill > ~co we take sech 2 ~ to be zero and use the asymptotic form of the 
eigenfunctions [see Eq. (36)]. In our calculations we used ~oo =4.5 with 
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J ~  sech 2 ~co=5X 10 -4. Putting (p~()=~0~(~, 0) for OeIj we get a second- 
order system of coupled linear differential equations, 

d2 NO f l c/~: q~s = (1 - ~ cos 01.) ~o~(~) - sech ~ ~ Y ~o'~(~) 
i = 1  

dO sin 0 w(O s, O) 

(37) 

The symmetry of qos mentioned above requires [(d/d~)~os 
Leaving aside the condition of Fourier transformability for the moment, we 
would have N o linearly independent initial conditions at ~ = 0, for which 
we can take the canonical basis e (1) ..... e (N~ of NNo with el~)= 6 o. Denoting 
the corresponding solutions by (o(s~= (o ~j)~ (suppressing the index ~: for a T i  T K  

while), we get a matrix c U of preexponential factors: 

~olJ)(~ ) ~ c o exp(s I~/) + do exp( -Q~ I~1) (38) 

with O~=O~(0~) [-see Eq. (36)]. For  an arbitrary initial condition, 
q)i(0) = a~ ( i=  1,..., No), the solution is given by q~, =Zjajqr  the corre- 
sponding preexponential factors ci = c,~(O~) being 

NO 
ci= ~ co a s (39) 

j--1 

Now for an allowed (nontrivial) initial condition, all ci must vanish, which 
implies that the determinant of the matrix (co) must be zero. This is the 
case only for certain discrete values of g. After determining such a discrete 
eigenvalue up to a certain numerical accuracy, the vector of the corre- 
sponding initial conditions (al,..., aNo) is given as the right-hand singular 
vector belonging to the smallest singular value of the matrix (cu) (see 
ref. 17; also see ref. 18). For  d~/d~ = const we found two eigenvalues in the 
range 0 < g < 1 for No = 48 as well as 96, namely 0.979 and 0.998. In order 
to learn more about the collision operator, we also calculated the corre- 
sponding discrete eigenvalues for azimuthal orders other than m = 1; the 
results are shown in Fig. 2. For negative parity and constant differential 
cross section there seem to be no nontrivial discrete eigenvalues, just as is 
the case for the eigenvalues of the collision operator/2 itself(l); the coupling 
"potentials" oc sech2 ~ appear to be too weak to accommodate negative- 
parity eigenfunctions. The discrete eigenvalues for positive parity are 
concentrated immediately below the continuum. Numerically we found that 
their number increases with No, but remains much smaller than No. In this 
connection we remark that we could also identify some resonancelike 
phenomena in the low-lying continuum (i.e., rapid phase changes through 
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Fig. 2. Nonnegative eigenvalues of -v5~s  for positive parity. 

~/2 in a particular oscillating component cp~.). We will later show that the 
physical observables like the slip length are not affected by this if No is 
chosen sufficiently large. 

5.2. The Cont inuum 

For eigenvalues t~> 1 the asymptotic form of the eigenfunctions is 
partly oscillatory and partly exponential, depending on whether 0 is 
smaller or larger than 0~= arccos(1/~) [cf. Eq. (32)]: 

(,o~(4, O) ~a~(O) sin[coK(0 ) 141 +8~ . (0 ) ] ,  
~c,~(O) exp[f2~(0) 14l ] + dK~(O) exp[ --f2~(0) 141 ], 

0<0K 
0 > 0 ~  

(40) 

Here coN(0)= If2~(0)] = (/:cos 0 - 1 )  1/2 for 0<0~ ,  with g2~ as in Eq. (36). 
The index n denotes again the degeneracy mentioned in connection with 
Eq. (18). Here the preexponential factor c~,(O) must vanish only on the 
interval ]0K, ~]. Therefore we have a certain freedom to choose the initial 
values at 4 = 0 ;  actually as we shall see--we can choose ~0~n(0, 0) for 
0 <  0~; the other initial values are then determined by the vanishing of 
cKn(O) for 0 > 0K. As a basis for the degenerated eigenfunctions belonging to 
a given ~ > 1, we choose q~,,(4, 0) given by the initial condition 

p 

1, n = l  

/ \ n O  
~K.(0 ,0)= s i n [ 2 ~ - - - | ,  n > l e v e n  for 0 < 0 ~  (41) \ 2 OJ 

( n - l O ' ]  
cos 2re ~ 0~/' n > 1 odd 

i.e., a Fourier expansion of the initial values in the interval [-0, 0K[. 
Numerically we proceed as in the last section. For a given fi > 1 and 

finite N o the number Nox of asymptotically oscillating components is easily 
found to be 

Nox = int(1/2 + NoO~/~) (42) 
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where int(r) denotes the greatest integer smaller than r. As initial 
values we take at first again ~plJ)(0)= ~0(~J)i(0)= 6 U. For N0.~< i<<.No we 
get the asymptotic form of Eq. (38) as before, which now defines a 
( N o - N o x )  x No matrix (co). For an arbitrary initial condition (al . . . . .  a x o  ) 

the preexponential factors ci = c~(Oi) are again given by Eq. (39), now with 
the restriction Nox < i <~ No. Defining b~ = x~u~ c~jaj (i = Nox + 1 ..... No), we d..~ j = 1 

can write Eq. (39) in the convenient form 

NO 

~. coaj=b,  ( i = N o x +  1 ..... No) (43) 
j = NOv + 1 

Aside from singular cases, which are unimportant for the following, we can 
now arbitrarily choose a 1 . . . . .  a N o x ;  the other initial values auo~+~ . . . . .  auo are 
then uniquely determined by Eq. (43), which guarantees the Fourier 
transformability. In order to realize Eq. (41) numerically, we naturally put 
r = ~o~,(0, 0~) for i =  1 ..... Nox. 

For fixed eigenvalue ff and initial condition n we calculated the values 
of q~,(~,0) on a lattice ~ = k A ~  (k=0,. . . ,Nr N ~ d ~ = ~ o )  and 
0 = 01 ..... ONo (see above). The preexponential factors d~(O~) [see Eq. (40)] 
were determined from the function values at ~o (and analogously for the 
discrete eigenfunctions). The amplitudes a~(O~) and phases O,,(0i) 
were determined from the asymptotic behavior of the corresponding 
components. 

Here we can compare again with the improved relaxation time ansatz 
of Einzel et al. (s) (cf. Section 4), now with respect to the eigenfunctions. 
Our continuum eigenfunctions consist of the asymptotic, oscillatory part 
given by Eq. (40) plus some exponentially decreasing part. Fourier trans- 
formation leads, after some elementary manipulations and neglecting 
multiplicative constants, to 

cosh(u/2) o~(0) a~,(O) In  sin ~9~,(0) 6(~c 1 _ w) ~,~.(u, 0 ) -  ~ 
i t  2 Jr- 

--cos 0~.(0) ~ ~c_1- - w + background (44) 

where w = v j r ( u )  and "background" comprises all nonsingular terms. The 
model collision operator of Einzel et al. 18) has no nontrivial discrete eigen- 
values, s  x) gets replaced by %v:px ,  and the continuum is given by 
tce ] - o% (Vvr) -1 ] w [(Vvr) -1, oo [ (cf. Section 4). The eigenfunctions are 
of the form ~p~(u, 0, qo) = ~b~(0) cos q~ with 

11 ]-w 145/ 
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where 2~ and /~ are constants depending on K, and w=v~r. Now the 
difference between the model and the full problem emerges clearly; e.g., the 
background terms have been dropped and the 0 dependence of the phases 
0~,(0) and all u dependence have been neglected. 

6. CALCULATION OF THE SLIP LENGTH 

In the last section, we have calculated only the Fourier-transformed 
eigenfunctions of v2~s But of course this is sufficient to determine the slip 
length [or the whole mean velocity /~(z), if necessary] because we can 
apply the same transformation to the boundary condition at z--0,  
Eq. (18). Before doing this, we remark that v~px oc Re Y21(f2) and /2 
is invariant with respect to projections on multipole components and 
independent of the azimuthal order m [cf. Eq. (21)], so 

/2 l(vzpx)= v~pxs v:pxOc(u)/e) B (46) 

where ~c is a function of u only; the index c stands for "collective shear 
mode, ''(8~ as/2 l(v:px) is the only nonrelaxing term that is responsible for 
the momentum current density. We denote the result of Oc(u) under the 
transformation of Eqs. (27) and (31) by q~c(~): 

(p~.(~) = (2~) 1/2 du eeU~/~Oc(U) sech 
- - 0 ( 3  

~o~(~) is easily calculated by expanding s in terms of the 
normalized eigenfunctions + ~ 2 o  of/2 belonging to l =  2, m = 0, parity + ,  
and eigenvalue --(he)B; see Vogel et al. ~1~ Using the overlaps of the eigen- 
functions + ~teo20 with Y2o and their transforms (po,20+ [cf. Eq. (47)] calculated 
there, we get 

~dcb + + 
(P~(~)= - ~ -  (Po~2(~)($~201Y20) 

22, 3/2 F(1/2 + 2s)[F(1/2 + s)-I 2 
- 1 --  4S 2 S [ / ' ( 2 S ) ]  2 sechZS ~ 

k 2 + 1/------4 Re sech 2ik 

( 1 )] 
•  - s+ik ,~+s+ik;  l+2 ik ; sech2~  

6 F(1/2 + ik) 
xRe IG] F ( l + i k )  

x3F2(-s+ik ,~+s+ik ,~+ik; l+2ik ,  l + i k ; l ) l  (48) 
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with the abbreviations 

1"( -- 2ik ) 1 
G - F ( _ s _ i k ) F ( 1 / 2 + s _ i k ) ,  s = ~ E - l + ( l + 8 2 ~ - )  ~/2] 

The same result has been obtained by Sykes and Brooker ~2~ in a different 
mathematical form. 

For d6/df2=const the quantity s has the value 0.1531 [cf. Eq. (23)]. 
In Fig. 3 we have plotted this special case, comparing -~Oc(~) with the 
relaxation time ansatz equivalent %~oB(z/2) ~/2 sech r (see below), where 

1 ~ (4n + 3) 
z,=4coB ~ (n+l ) (2n+l ) [ (n+l ) (2n+l )_2~]=l .O12c~l  (49) 

n = O  

(see Sykes and Brooker(12~; cf. Section 4). We see that both curves agree 
rather well. 

The result of Px under the transformation of Eq. (47) is 
(~/2) ~/2 p~ sech ~.. Writing ~Oo(~ ) =sech ~, ~Oo(~, 0 )=  q~o(~) sin 0, and 
q)~(~, 0) = ~o~(~) sin 0 cos 0, we get from Eq. (18) by transformation [see 
Eq.(47)] and dividing by a/(kBT)vvpvoff~cos~o a dimensionless 
expansion of (Pc(~, 0) in terms of transformed eigenfunctions of v ~ s  in the 
half-space v~ > 0, 

~oc(~,O)=Aoq~o(~,O)+~Aa~oa(~,O)+ d(1/~)~A,~,,qo~.,,(~,O) (50) 
d n 

~0 
1 . 2  

1 . 0  

Fig. 3. The 

, i i i i i i i 

1 2 3 ,4 5 6 7 ~ a 

radial part -q)~ of the transformed collective shear mode s x) compared 
to its equivalent in the relaxation time ansatz. 
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for 0 < n/2, with 

A0 = - - -  Co= - - ~  (51) 
v v a v v 

[cf. Eq. (16)] and certain coefficients Ad and A~,,: the first sum in Eq. (50) 
is taken over the discrete eigenvalues 0 < ~d < 1. 

In order to evaluate Eq. (50) numerically, we restrict the integral over 
1/~c to the interval [ l/if: . . . .  1//s ] with certain cutoff values ~min and /~max 
(see later) and divide this interval into N~. parts J1 ..... JNK of equal size. We 
assume that the coefficients A~n are approximately constant on these 
smaller intervals, A Kn = Aj~ for l/if: E Jj. Further, we restrict ourselves to a 
finite number Na of discrete eigenvalues (for a finite number No of angles 
this is the case anyway; see Section 5.1) and to a certain number Nic of 
initial conditions at ~ = 0 (see Section 5.2). So we have from Eq. (50) 

Na 
qo,.(~, O)= AocPo(r O)+ ~ AdCPd(~, O) 

d- - I  

N~ Nit 

+ ~ ~ Aj, I_ d(1/~c) q~,(~, 0) (52) 
j=l  n=l 

for 0<z /2 .  We now define 1/s as the center of Jj and ~p;~=~p~ 
( j =  1 ..... N~). Then we get a system of linear equations for the coefficients 
A0, Ad, and Aj, by projecting Eq. (52) onto ~0 o, ~Pd', and ~pj,~. 
( d ' =  1,..., Nd; j '=  1 ..... N,~; n'= 1 ..... N~~ with each function restricted to 
the half-space 0 < ~/2. For this purpose we use the scalar product (h stands 
for "half-space") 

<~o1 ~o')h = 2 dOsinOcosO d~o(~,O) q/(~,O) 

oc (~,i v . o ( v . )  I~,') (53) 

where ~ and 0' denote the inverse transforms of ~o and ~o', respectively, in 
momentum space [cf. Eq. (12)]. Hence we have the system of equations 

Nd 

(CP[~0~)h=Ao(q)I(PO)h+ 2 Ad((PlfPd)h 
d=l 

NK Me 
-~-j2.=l n=l ~' Aj, fjd(1/~c) (~ol~o~..)h (54) 

with (p running over the eigenfunctions mentioned above. Except for 
cp = r the integrals over 1/ff may be approximated by 

fjd(1/ff) (~ol qg~,)h ~ IJjl (~01 ~oj,,)h (55) 
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where IJjl =A(1/~)=(1/~m~n-1/K~m~• for each j. We have to treat 
the case (p = (pj~, separately because then the integrand has ~ and ga 
singularities (see later). 

The { integral in Eq. (53) was evaluated by dividing into 5o ~~ d{ and 
5~c~o d{, which gives an inner (int) and an outer (ext) part of (~ol ~o')h: 

" / ext ( ~  [ g0')h = (gO [ g0')~nt + (rP [ rP )h (56) 

For the inner part we used the numerically calculated function values and 
for the outer part the asymptotic form of the eigenfunctions [see Eqs. (36) 
and (40)] and the approximation sech ~ ~2e  -r Integrals involving ~o~. 
were cut off at ~'oo = 10 (cf. Fig. 3) and the numerical values for ~0~. were 
used throughout. 

We calculated the ~ integrals in the outer parts of the overlaps over 
products of exponential and/or trigonometric functions with well-known 
formulas, one of which is 

f ~  d~ sin(co~ + ,9) sin(co'~ + '9') 
~co 

1 
= ~ cos('9 - '9'){n6(co - co') - ~co sinc [(co - co') 4~ } 

'{' 
+ -~ -~)-+-~;m, sin [ ( co + co ' ) ~oo + '9 + '9' ] 

- sin(,9- ,9') cos[(co -co ' )  g~o] ~ (57) 
o, 7 - 2  

which is valid for co r -co', with sinc r = r -  1 sin r. Two of the overlaps can 
be evaluated analytically: 

(gOo I gOo)h = 1/2 (58) 

and it can be shown that 

(~0otq~c)h = 4  f ?  d~ ~%(~)sech ~ = - 4 ( ; )  1/2 

[cf. Eq. (49) and Sykes and Brooker~ 
With the help of Eq. (57) and the formula 

~ d v f ( Y ) ~ 2 e d f  (o) for e--+0 
- y ~YY J 

COBz~ (59) 

(60) 
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we can perform the missing 
the abbreviations 0<j)= 0~: 
etc., we get after elementary 

integral in Eq. (54) for the case (p = (pj,,: With 
[cf. above and Eq. (40)] and aj,,(O)=a,~/,(O), 
but somewhat lengthy manipulations 

A(1/~) j~ d(1/~c)(qoj~, l q)l.n)h 

~, <qOjn, ] int ~ OI;' (~Ojn)h -~ dO sin 2O aj,,,(O) 
~0 

( ,wo,(o) 20) x [aj~(0)(cos[0j.(0)-0j~,(0)] \A(1/~)if2 cos0 

+ sin[2coy(0) r + Oe,(0) + Oj,,(0)] 
4coj(0) 

+ sin[Oj,(0)- Oyn,(0)] (_a)j(0) 1 
\gj  cos(0) 4~o~7(0i)) 

r 3 
{a~n(0) sin[0~n(0)- 0in(0)] } | 

cos 0 ~ ~ A 

+ ;~'ii dO sin 2O dj'~'(O) @'(O) e x p [ -  2f2j(O) ~c~ 
2s ) (61) 

We replaced the derivative occurring on the rhs by the slope of the corre- 
sponding secant 

dc~ ~(~s+~)-~(~ j )  (62) 
/(TjT 1 

which we chose in the direction of increasing ~" (upper sign) unless the 
number Nox of oscillatory "channels" had jumped [cf. Eq. (42)], because 
such a discontinuity of N0x involves also a discontinuity of the amplitudes 
and phases (for a finite number N o of angles, at least). Jumps of Nox on 
both sides were avoided by using a sufficient number N~ of eigenvalues. 

For the parameters N~ and N o the values 45 and 48, respectively, were 
sufficient within the accuracy of our numerical calculation: For example, 
using instead No--96 changes the slip length typically by 0.02 %. 

When choosing the cutoff parameters /~min and /s [see after 
Eq. (51)] we had to prevent numerical failure, which occurs when either 
~max is tOO high or one of the eigenvalues ffj comes too near to the discon- 
tinuity points of Nox [see Eq. (42)] from above. The selection of /~min 
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together with the number Ni~ of initial conditions in Fourier space is 
restricted by the condition 

Ni~ ~< Nox(tCmin) = int[1/2 + NoO .... /r~] (63) 

Ecf. Eqs. (40) and (42)]. The possible values of Nic and N~ are bounded by 
the capacity of the computer used, assuming a reasonable amount of 
programming. 

A rather good approximation for ~ is achieved by neglecting all basis 
functions except qgo in Eq. (52). The slip length would then be given by 

~ _  Vv ~q~clq~o)h_ 8 Vv%=O'533Vvr~ (64) 
~oB (qOol~Oo}n 15 

[-see Eqs. (51), (58), and (59)], which in the case of d~/d f2=cons t  comes 
to 93% of the true slip length (see Table I). Subsequently, this can be 
understood because the half-space overlaps of eigenfunctions belonging to 
different eigenvalues are the negative of the overlaps in the other half-space 
v~ < 0, as the eigenfunctions are orthogonal with respect to the weight func- 
tion v_ in the entire space. But for v z < 0 all eigenfunctions are exponen- 
tially decreasing, so that the overlaps mentioned above turn out to be 
rather small. Expressing the slip length in terms of r and q)~, or of ~0o, ~0~, 
and q~2, changes the value of Eq. (64) only negligibly (by less than 0.4%), 
so that the continuum must be responsible for the missing 7 %. 

We turn now to the model slip length determined by Einzel et al. ~8~ as 

ffmodel = 0.5819Vv ~ (65) 

For a constant differential cross section this becomes 

~model = 0"5889VF/O)B (66) 

[-see Eq. (49)]. In Table I we give our results with three different choices of 
numerical parameters, as well as the relative deviation from ~model" We note 
a small improvement between - 1 %  and -2%./4~ 

In order to investigate the slip length for more realistic differential 
cross sections, we modified our approach by varying ,!. + keeping the other ~2 
parameters 2t + fixed. For this purpose we took the Landau parameters F~, 
F~, F] ,  and F~ determined by Greywall ~22) and the consistent value of F~ 
by Engel and Ihas ~ )  and calculated the resulting ~ f  as a function in terms 
of the pressure p (we set F a and all higher Landau parameters equal to 
zero; using the sum rule for F~ would have given an altogether 
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Table I. The Slip Length ~ for db[d~ =const  and 
Various Numerical Parameters 

1149 

( Relat ive devia t ion  

N~. Ni~ ~ .... ~ , ~  (Vv/COB) from (~od~I, % 

67 5 1.046 7.05 0.5799 - 1.5 

67 3 1.046 7.05 0.5764 - 2.! 

112 3 1.03 7.5 0.5796 - 1.6 

unreasonably large value for this parameter). The corresponding singlet 
and triplet partial wave amplitudes are 

AI~ A~- 3A~, A~I'= A~ + A~ (67) 

with Ag=Fg/[l+Fg/(2l+l)]  ( g = s , a ;  l = 0 , 1 , 2 ) ,  which result in the 
singlet and triplet scattering amplitudes 

A~~ qS) = A(o ~ + A ]~ 0) + A~~ 0) - 3(1 - cos 0) 2 sin 2 ~]  

and 

AIl 1(0, ~) = [A~) + A]~lPl(cos 0) + A~l)P2(cos 0)] cos q5 (68) 

respectively. (24) From these the spin-averaged transition probability 
W(0, ~b), which is proportional to d6/df2, I~ is up to a constant factor given 
by~  25) 

W(0, ~b) oc [A(~ qS)+ AltO(0, ~)]~-+ 2[A~)(0, ~)]2 (69) 

Carrying out the q5 integrations in Eq. (22), we find 

2 + = A/B (70) 

where 

A = dO sin ~ - ~ - ~ cos  ~ 0 + 3 cos  4 

• h~ + h2o +-~ e~h2- ehoh~ 

12 6 + 3 sin4~ h~+~ho+ c2h~-~choh2 

822/55/5-6-19 
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and 

B =  d~ sin ~ h2+h~+-~c~h2--~choh2) (71) 

with the abbreviations c=A~ ~ h,=Agl + A~li)COS~)+ A~~ 
( i=  0, 1), and h2 = 3 ( 1 -  cos 9) 2. The remaining ~) integrals were performed 
numerically for the sake of brevity. The result for 2 [  as a function of the 
pressure p is shown in Fig. 4. Circles mark the values calculated for the 

y s s s a a parameters tF0, F 1 ,  F 2 ,  F 0 ,  F 1 } of ref. 22 with the help of the interpola- 
tion formula for F~ given in ref. 23. We see that 2~- varies between 0.31 at 
zero pressure and 0.71 at melting pressure. In order to span this interval, 
we additionally calculated the slip length for )~  =0.4, 0.6, and 0.8 
(2[  = 0.2 corresponds to the constant differential cross section discussed 
above). The corresponding values for ~ deviated from ~model by -2.0,  -2.3,  
and - 2 . 5 % ,  respectively [cf. Eqs. (65) and (49)]; these calculations were 
carried out with the third set of parameters from Table I. The more exact 
treatment of the boundary value problem presented here yields some 
improvement in comparison to the model calculation, (8~ but is not suf- 
ficient to explain the experimental results for the slip length. These differ by 
- 1 0  to - 3 0 %  (2) and even by - - 4 0 %  (4) from ~model" In the first measure- 
ment the discrepancies have been explained by finite-size effects, ~2'2~ but in 
the second case it seems that the hypothesis of purely diffuse reflection has 
to be modified in favor of preferred backward scattering 14't9'2~ at z = 0  
(depending on the material and structure of the wall surface, of course). 

. 7  a I 

. 6  

. 5  

.3 I I I 

to 20 30 

p r e s s u r e  [ b a r )  
The interaction parameter 2s as a function of pressure from data of Greywal11221 and 

Engel and Ihas. (23) 
Fig. 4. 
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7. CONCLUSION 

We have solved the simplest boundary value problem for fermions, the 
so-called Kramers problem of a stationary current in a half-space bounded 
by a diffusely reflecting wall in the nearly degenerate regime, using the 
framework of the linearized Uehling Uhlenbeck equation. For this purpose 
we used a method developed by Case 19~ and Cercignani I1~ involving the 
spectral decomposition of v:-1s which we carried out using results of 
Sykes and Brooker ~12) and Vogel et al. I~ 

The original two-dimensional integral equations for the eigenfunctions 
were changed into integrodifferential equations by a Fourier transforma- 
tion with respect to the reduced energy. These were solved with suitably 
chosen initial conditions in Fourier space, in analogy to the traditional 
coupled-channels approach for the inelastic quantum scattering problem 
(see, e.g., Rhoades-Brown et alJ26)). 

The expansion of s l(v: Px) in terms of the nonorthogonal system of 
eigenfunctions belonging to nonnegative eigenvalues in one momentum 
half-space, which arises from the boundary condition at the wall, was 
carried out by the aid of discretizations, suitable cutoffs, and projections on 
the remaining basis functions. 

The slip length was evaluated for a constant and also for more realistic 
differential cross sections and compared with model calculations by Einzel 
et aL ~8) Our results are systematically somewhat closer to the experimental 
values, but there remains a discrepancy between theory and measure- 
ment C4'~9"2~1 which may be caused by preferred backward scattering at the 
boundary. 

APPENDIX  A 

In this appendix we derive Eqs. (33) (Appendix A.1) and (34) 
(Appendix A.2) for the kernel w(O, 0')  of the 0 integration within the 
linearized collision operator I2 in the case of azimuthal order m = 1 and 
constant differential cross section d~/ds 

A.1. Evaluation of w ( e ,  e') 

In order to sum up Eq. (30), we first express the spherical harmonics 
in terms of associated Legendre functions, 

[- 2l+1 ~1/2 
Y.(O, 0)= k 4 ~ + - l ) J  P](cos 0) (A1) 
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Using Eq. (23) for 2l +, we get 

w(O, 0') = ~ [2 - ( - )'3 f~(o, o') 
/ = 1  

with the abbreviation 

(A2) 

We now define 

1 
J)(O, 0 ' ) = -  P](cos 0) P)(cos 0') (A3) 

/ ( / +  1) 

f(O, 0')= ~ f/(O, 0') 
1 = 1  

(A4) 

P)(cos(~ - 0)) = ( - ) l +  1 P](cos 0). Therefore Eq. (A2) and remark that 
becomes 

w(0, 0 ' ) =  3 + f~(0, 0') 
l ~  1,odd l =  1,even 

3 0 = 5[ f (  , O')+f(rc O, 0')] + �89 O')-f(rr-O, 0')] 

= 2f(O, 0') +f(rc - O, 0') (A5) 

We investigate f(O, 0') further by expressing the associated Legendre 
functions by Gegenbauer polynomials, P)(cos 0 ) =  - s in  0 C ~ l ( c o s  0). 
Using l(l+ 1)=  2(3)l_ 1/(l- 1)!, we can write Eq. (A4) in the form 

1 0' k! r=l f(O,O')=~sinOsin ~ (-~krkC~/2(cosO) C3/2(cosO ') (A6) 
k = 0  

In this form f(O, 0') can be summed up in the closed form of Eq. (33), t27) 
if we allow ourselves to extend the domain of validity r ~ ] -  1, 1 [ given 
there to r = 1. This is permissible according to Abel's theorem if the rhs of 
Eqs. (A6) or (A4) converges at all. To show this, we use [ l ( l+  1)] 1= 
l-2+O(l 3) and the well-known asymptotic formula for the associated 
Legendre functions for 0, 0' r 0, rc 

P~(cosO)=\rcsinO] cos l+ O+ +0(l 1/2) (A7) 

which gives eight terms in Eq. (A6). Seven of these are at least of the order 
of l 2 and can be summed up without problems. The leading eighth term 
is, after elementary manipulations, proportional to 

l 1[cos(�89 )cos(/0 )-sin( �89 )sin(/0 ) 

+ cos(�89 ) sin(/0 + ) + sin(�89 ) cos(/0 + )] 
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with 0+ = 0 + 0 '  and consists itself therefore of four summable terms, 
provided that 0 # 0 ' .  QED 

In order to evaluate Eq. (33) numerically, it is convenient to express 
the hypergeometric function F(3/2, 3/2; 3; t) in terms of complete elliptic 
integrals, which are available in program libraries. To this end, we apply 
a well-known linear transformation 

( - t )  3/2 F(3/2, 3/2; 3; t ) =  "{3/2F(3/2, 3/2; 3; 7) (a8) 

with 
7= t / ( t -  1 ) = 2  sin 0 sin 0 ' / [ 1 - c o s ( 0 +  0')] ~ [0, 1] 

and Gauss' contiguous relations several times to get 

) [ ( , , )  ( , 1 ) ]  
3 '3 ;Z  = ~  ( 2 - t ) F  ~ ,5 ;1 ; t"  - 2 F  - - ' 1 ; 7  

F ' 2 '  2 ' 2 '  

16 
z72 [ ( 2 -  7) K(7) -  2E(7)] (A9) 

where K and E denote the complete elliptic integrals in the definition of 
Abramowitz and Stegun. t2s) 

In Fig. 5 we have plotted level lines of w(O, 0'). 

A.2. The  A s y m p t o t i c  Behavior  of  f(@, @') 

For 0-~ 0' the parameter t tends to - o c  [Eq. (33)1, and according to 
Erd61yi et a/.  (29) w e  have 

F(3/2, 3/2; 3; t)~8rc 1(-t)-3/2 [ - l n ( - t )+cons t ]  (A10) 

l [ X . 5  

8' 
. q  

. 3  

. 2  

. 1  

O .  I I I I I I I I 

Fig. 5. 

0 .1 .2  ,3  .4 . 5  . 6  .7  ,8  . 9  ~ 1 . 0 X ~ I  

Level lines of the kernel w(0, 0') of angular integration in the collision operator s 
The figure is to be imagined as reflected at the diagonals 0 = 0' and 0 = n -  0'. 
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SO 

f ( O , O ' ) ~ ( 2 ~ s i n O )  1 { _ l n [ l _ c o s ( 0 _ 0 , ) ] + l n s i n Z 0 + c o n s t }  (Al l )  

[cf. Eq.(33)],  which leads to Eq.(34) because of 1 - c o s ( 0 - 0 ' ) ~  
�89 2 (being the leading term of the corresponding Taylor expansion). 

APPENDIX  B 

In this appendix we outline the proof for the relative compactness of 
the operator K' with respect to - v ' .  According to Reed and Simon, ~15) it 
suffices to show that /~'v' 1 is square-integrable (and therefore Hilbert- 
Schmidt and compact). So we have to prove that 

fcc  f ro  (/,,/ - -  I)) 2 1 
oo - ~  du dv sech2[_�89 u _ v)] (/)2 q_ 7~2)2 

x d(cos 0) d(cos 0') w2(O, 0') < oQ (B1) 

[cf. Eq. (29)]. The first double integral is finite, as can be seen by changing 
from the variable u to u - v. The angular integrals are finite as well because 
w(0, 0') has only very weak (logarithmic) singularities for 0 = 0 '  and 
0 = r e - 0 '  [cf. Eqs. (33) and (34)] and the intervals of integration are 
finite. QED 
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